ideas, refer to Cost Effective Home Building: A Design and Construction Handbook (NAHBRC, 1994).

5.6.4 Roof Sheathing

Roof sheathing thickness is typically governed by the spacing of roof framing members and live or snow loads. Sheathing is normally in accordance with prescriptive sheathing span rating tables published in a building code or made available by manufacturers. If the limit of the prescriptive tables is exceeded, the designer may need to perform calculations; however, such calculations are rarely necessary in residential construction. The process of selecting rated roof sheathing is similar to that for floor sheathing in Example 5.5.

The fasteners used to attach sheathing to roof rafters are primarily nails. The most popular nail types are sinker, box, and common, of which all have different characteristics that affect structural properties (refer to Chapter 7). Proprietary power-driven fasteners (i.e., pneumatic nails and staples) are also used extensively. The building codes and APA tables recommend a fastener schedule for connecting sheathing to roof rafters. Generally, nails are placed at a minimum 6 inches on center at edges and 12 inches on center at intermediate supports. A 6inch fastener spacing should also be used at the gable-end framing to help brace the gable-end. Nail size is typically 8d, particularly since thinner power driven nails are most commonly used. Roof sheathing is commonly 7/16- to 5/8-inchthick on residential roofs. Note that in some cases shear loads in the roof diaphragm resulting from lateral loads (i.e., wind and earthquake) may require a more stringent fastening schedule; refer to Chapter 6 for a discussion of fastening schedules for lateral load design. More importantly, large suction pressures on roof sheathing in high wind areas (see Chapter 3) will require a larger fastener and/or closer spacing. In hurricane-prone regions, it is common to require an 8d deformed shank nail with a 6 inch on center spacing at all framing connections. At the gable end truss or rafter, a 4 inch spacing is common.

5.6.5 Roof Overhangs

Overhangs are projections of the roof system beyond the exterior wall line at either the eave or the rake (the sloped gable end). Overhangs protect walls from rain and shade windows from direct sun. When a roof is framed with wood trusses, an eave overhang is typically constructed by extending the top chord beyond the exterior wall. When a roof is framed with rafters, the eave overhang is constructed by using rafters that extend beyond the exterior wall. The rafters are cut with a "bird-mouth" to conform to the bearing support. Gable end overhangs are usually framed by using a ladder panel that cantilevers over the gable end for either stick-framed or truss roofs. Refer to Figure 5.9 for illustrations of various overhang constructions.

A study completed in 1978 by the Southern Forest Experiment Station for the U.S. Department of Housing and Urban Development found that the protection afforded by overhangs extends the life of the wall below, particularly if the wall is constructed of wood materials (HUD, 1978). Entitled the *Prevention and Control of Decay in Homes*, the report correlates the climate index of a geographic area with a suggested overhang width and recommends highly conservative widths. As a reasonable guideline (given that in many cases no overhang is provided), protective overhang widths should be 12 to 24 inches in moist, humid climates and more if practicable. A reasonable rule-of-thumb to apply is to provide a minimum of 12 inches of overhang width for each story of protected wall below. However, overhang width can significantly increase wind uplift loads on a roof, particularly in high wind regions. The detailing of overhang framing connections (particularly at the rake overhang on a gable end) is a critical consideration in hurricane-prone regions. Often, standard metal clips or straps provide adequate connection. The need for special rake overhang design detailing depends on the length of the overhang, the design wind load condition, and the framing technique that supports the overhang (i.e., 2x outriggers versus cantilevered roof sheathing supporting ladder overhang framing).

5.6.6 Gable-End Wall Bracing

Roof framing provides lateral support to the top of the walls where trusses and rafters are attached to the wall top plate. Likewise, floor framing provides lateral support to the top and bottom of walls, including the top of foundation walls. At a gable end, however, the top of the wall is not directly connected to roof framing members; instead, it is attached to the bottom of a gable-end truss and lateral support at the top of the wall is provided by the ceiling diaphragm. In higher-wind regions, the joint may become a "hinge" if the ceiling diaphragm becomes overloaded. Accordingly, it is common practice to brace the top of the end wall (or bottom of the gable end roof framing) with 2x4 or 2x6 framing members that slope upward to the roof diaphragm to attach to a blocking or a ridge "beam" as shown in Figure 5.9. Alternatively, braces may be laid flatwise on ceiling joists or truss bottom chords and angled to the walls that are perpendicular to the gable-end wall. Given that braces must transfer inward and outward forces resulting from positive wind pressure or suction on the gable-end wall, they are commonly attached to the top of the gable-end wall with straps to transfer tension forces that may develop in hurricanes and other extreme wind conditions. The need for and special detailing of gable-end wall braces depends on the height and area of the gable end (i.e., tributary area) and the design wind load. The gable endwall can also be braced by the use of a wood structural panel attached to the gable end framing and the ceiling framing members.

As an alternative to the above strategy, the gable-end wall may be framed with continuous studs that extend to the roof sheathing at the gable end (i.e., balloon-framed). If the gable-end wall encloses a two-story room–such as a room with a cathedral ceiling, it is especially important that the studs extend to the roof sheathing; otherwise, a hinge may develop in the wall and cause cracking of wall finishes (even in a moderate wind) and could easily precipitate failure of the wall in an extreme wind. Depending on wall height, stud size, stud spacing, and the design wind load condition, taller, full-height studs may need to be increased in size to meet deflection or bending capacity requirements. Some designer judgment should be exercised in this framing application with respect to the application of deflection criteria. The system deflection adjustment factors of